Набор хромосом в яйцеклетке

Рост яйцеклетки

Женские гонады, или яичники, в которых начинается созревание яйцеклетки, расположены в области малого таза и соединены с маткой парой фаллопиевых труб.

Яйцеклетка, готовая к превращению из ооцита I порядка в ооцит II порядка, все еще находится в фолликуле яичника. По добно сперматоциту I порядка, она тоже проходит очередную стадию мейоза с той лишь разницей, что в итоге не образуются две взаимно сочетающиеся клетки.

Поскольку хромосомы матери и отцы передают своим детям перетасованные версии тех, которые они унаследовали от своих родителей, трудно использовать большинство хромосом, чтобы проследить генеалогию назад очень далеко. Это гаплоидная мужская гаметная клетка, то есть это репродуктивная клетка, содержащая один набор хромосом. Сперма оплодотворяет яйцеклетку, которая служит женской гаплоидной гаметой.

Вместе сперматозоиды и яйцеклетки образуют зиготу или оплодотворенную яйцеклетку, которая затем может расти и развиваться в новый организм. Поскольку сперматозоиды гаплоидны, они вносят половину генетической информации в диплоидное потомство, которое содержит два набора хромосом. У млекопитающих пол или пол потомства определяется клеткой спермы, так как яйцеклетка всегда обеспечивает Х-хромосому.

В результате деления ооцита I порядка из каждой пары хромосом образуются две одинарные хромосомы, однако одна из двух новых клеток (ооцитов II порядка) получается больше другой. Именно она и развивается в зрелую яйцеклетку. Меньшая клетка (или полярное тельце с таким же набором 23 одинарных хромосом) перемещается в прозрачную зону вокруг первоначального ооцита I порядка и там погибает. Оставшийся ооцит II порядка с его прозрачной зоной похож формой на сперматиду хотя и заметно крупнее последней. Спустя день-два он по фаллопиевой трубе опускается из яичника в полость матки, где претерпевает вторичное деление. Яйцеклетка не может двигаться самостоятельно, и по фаллопиевой трубе ее проталкивают миниатюрные, похожие на реснички выросты, а также сокращения самой трубы. Этот процесс, называемый овуляцией, ежемесячно происходит у всех женщин детородного возраста.

Производство спермы более 200 миллионов человек, произведенных в день у человека, и процесс обнаружения и оплодотворения яйца сам по себе представляет собой сложный процесс, включающий мейоз, митоз, замедленное созревание, различные гормоны и ферменты, сенсорные детекторы, сперматозоиды, и другие функции. И это только с точки зрения спермы. Несмотря на то, насколько замечательно развитие такого сложного процесса в живых организмах, половое размножение является почти универсальным аспектом жизни. Примечательно, что в создании новой жизни родители и женщины-родители вносят вклад в потомство.

Виды

В медицине принято делить мужские половые клетки на 2 вида: те, в которых содержатся X хромосомы (гиноспермии) и те, которые несут Y хромосомы (андроспермии). Первые клетки приводят к зачатию девочки, а вторые – мальчика. Стоит сказать, что тот факт, сколько хромосом у сперматозоида, не зависит от его разновидности. В норме их всегда будет 23.

К сожалению, сразу после зачатия абсолютно точно узнать пол ребенка невозможно, однако его можно предположить с достаточно большой вероятностью. Как показывают наблюдения, репродуктивные клетки с Y-хромосомой гораздо более активны, в то время как клетки, несущие X-хромосому имеют большую продолжительность жизни.

Исходя из этого, можно сделать вывод, что пары, желающие зачать мальчика должны вступать в незащищенные половые контакты во время овуляции. В этом случае сперматозоиды с Y хромосомой достигнут цели гораздо быстрее. Если же половой акт произошел за сутки до овуляции – повышаются шансы зачать девочку.

Стоит сказать, что для удачного оплодотворения важно не только количество сперматозоидов, но и их качество, состав семенной жидкости. В спермограмме даже самого здорового мужчины наряду с качественными гаметами встречаются также патологические формы репродуктивных клеток

Однако их количество обычно не превышает 20-25%.

Иногда сперматозоидов с нетипичным строением может быть чрезвычайно много. Такое может происходить при различных заболеваниях половых органов (как правило, воспалительного характера).

Чтобы узнать соотношение здоровых и патологических репродуктивных сперматозоидов, выявить каковы особенности строения сперматозоидов у мужчины, медики традиционно выполняют тест Крюгера.

Его суть состоит в том, что мужчина сдает сперму в медицинском учреждении путем сексуального самоудовлетворения. Биологический материал собирается в стерильный контейнер, а затем отправляется в лабораторию. Там его окрашивают по Папаниколау (это необходимо для того, чтобы четче рассмотреть половые клетки) и исследует под микроскопом.

При различных патологиях сперматозоид может иметь такое строение:

  • избыточная толщина шейки или ее искривление;
  • наличие двойного хвоста;
  • полное отсутствие хвоста;
  • деформации головки;
  • наличие двух головок.

Кроме этого возможны также малозаметные изменения в форме сперматозоида.

Данное состояние требует срочного медицинского вмешательства, так как чрезмерное число аномальных репродуктивных клеток повышают шансы замершей беременности, выкидышей, а также рождения ребенка с различными патологиями.

Особенности мужских сперматозоидов

Строение и функции сперматозоида тесно взаимосвязаны. Мужская гамета обладает свойствами, обусловленными ее назначением и особенностями:

Способностью двигаться за счет жгутообразного хвостика, благодаря чему обеспечивается возможность встречи сперматозоида и яйцеклетки.

Несет отрицательный электрический заряд, что не дает мужским гаметам склеиваться в сперме.

В эякуляте (семенной жидкости, сперме) здорового мужчины содержится примерно 200 миллионов сперматозоидов. У различных видов живых существ количество мужских гамет может кардинально различаться. Так, например, в эякуляте коня насчитывается примерно 100 миллиардов сперматозоидов.

Благодаря хвостику-жгутику мужская гамета в семенной жидкости развивает скорость до 5 см/час.

Важность процесса движения

Подвижность мужской половой клетки является основной ее качественной характеристикой. Она обеспечивается хвостом гаметы за счет совершения однотипных движений. Особенности строения яйцеклетки и сперматозоида делают процесс оплодотворения наиболее вероятным. Оболочка мужской гаметы имеет специальные рецепторы, которые способны распознавать химические вещества, выделяемые яйцеклеткой. Благодаря этой способности сперматозоиды способны к целенаправленному, а не хаотическому движению. После эякуляции практически все здоровые половые клетки представителя мужского пола направляются к женской гамете. Такое движение называют положительным хемотаксисом.

Высокая подвижность сперматозоидов играет более важную роль, чем их количество в эякуляте. Об этом часто говорят специалисты, работающие с мужскими и женскими половыми клетками. Так, если в семенной жидкости подвижными являются около сорока процентов сперматозоидов, то это уже считается патологией. В этом случае вероятность оплодотворения яйцеклетки сильно уменьшается.

Если сперма состоит из полностью неподвижных сперматозоидов, то это часто свидетельствует о такой патологии, как акиноспермия. В этом случае половые клетки живые, но они неподвижны, а поэтому не способны произвести оплодотворение яйцеклетки. Чаще всего это нарушение вызывается разными патологиями половых желез.

Развитие сперматозоида

С этого момента деление клеток происходит по другому сценарию. На второй стадии мейоза вместе с каждым сперматоцитом II порядка делятся надвое и одинарные хромосомы. Их половинки проникают во вновь образованные клетки, и в результате формируются две взаимно сочетающиеся клетки, каждая из которых снабжена полным набором из 23 половинок одинарных хромосом.

Иногда возникает ошибка, когда яйцеклетка или сперма развивается, и у нее могут быть дополнительные или отсутствующие хромосомы. Неизвестно, почему это происходит в определенном яйце или сперме. Когда аномальное яйцо или сперма вовлечены в зачатие, не будет точно 46 хромосом, и в результате беременность будет иметь хромосомную аномалию.

По мере того, как женщина становится старше, вероятность того, что у нее может быть ненормальная беременность с увеличением или отсутствием хромосомы, увеличивается. По всей видимости, нет связи с большинством семейных историй, этнической принадлежности, диеты или образа жизни.

Эти новые клетки называются сперма тидами. Своей округлой формой они на поминают сперматоциты I и II порядка, но должны еще пройти ряд превращений, чтобы стать полноценными сперматозоидами с овальным тельцем, жгутиком и набором из 23 одинарных хромосом. Все эти изменения происходят в клетках Сертоли, или сустеноцитах, а их конечным результатом становится вытянутый в длину сперматозоид с головкой, заполненной генетическим материалом из 23 одинарных хромосом и апикальным тельцем, или акросомой.

Общим примером является синдром Дауна. В синдроме Дауна имеется дополнительная копия хромосомы № 21, создающая в общей сложности 47 хромосом. По этой причине он также известен как трисомия. Ниже показаны хромосомы человека с синдромом Дауна. Приблизительные шансы иметь живого ребенка с хромосомной аномальностью.

Возраст матери Шанс на аномалию Возраст 20 1 в 525 Возраст 25 1 в 475 Возраст 30 1 в 380 Возраст 35 1 в 180 Возраст 38 1 в 105 Возраст 40 1 в возрасте 65 Возраст 42 1 в возрасте 40 Возраст 45 1 в 20. Эти гены обычно попадают парами. Один экземпляр унаследован от нашей матери и от нашего отца. Однако некоторые мутации ответственны за причинение определенного заболевания.

Поступательное движение сперматозоида обеспечивается биением жгутика, со стоящего из цилиндрических волокон.

Готовые к оплодотворению сперматозоиды отделяются от сустеноцитов и поступают в длинную извилистую трубку — придаток яичка, расположенный в его тыльной части, где они окончательно созревают и покрываются клеточной оболочкой. Там они три-четыре недели дожидаются своего часа вместе с миллионами других сперматозоидов, а в случае не надобности всасываются обратно в организм. Весь процесс развития сперматозоида от зарождения до гибели длится около двух месяцев.

Одна хромосома из каждой из ваших 23 пар приходила от каждого из ваших родителей. Две хромосомы пары содержат одни и те же гены, но гены имеют небольшие отличия. Одна пара хромосом — половые хромосомы — уникальна. Матери всегда передают Х-хромосому своим детям. Хотя большинство взрослых клеток содержат два набора хромосом, сперма и яйцеклетки различны. Эти специальные клетки имеют только одну хромосому из каждой пары. Какая хромосома, которую они получают из каждой пары, является случайной, что делает каждую сперму или яйцеклетку уникальной.

Существует также немного смешивания, прежде чем хромосомы будут отсортированы в отдельные сперматозоиды или яйцеклетки. Когда сперма и яйцеклетка объединяются вместе при оплодотворении, они создают одну клетку с двумя полными наборами из 23 хромосом. Эта отдельная ячейка делит на создание новых клеток, снова и снова, формируя тело развивающегося ребенка. Так вы пришли к вам. Если у вас есть братья и сестры, те же события создали их. Но поскольку процессы производства яиц и сперматозоидов являются случайными, ваши братья и сестры не получали тот же набор хромосом от каждого из ваших родителей, что и вы.

Зачем нужен митоз?

Как видите, фазы митоза для ЕГЭ достаточно просто запомнить, если понять, какие процессы происходят в каждой из них. Теперь давайте обсудим, зачем вообще нужен митоз.

У вас прямо сейчас растут волосы и ногти? Обновляется кожный покров или клетки крови? Если вы живы, смело отвечайте «да». Значит прямо сейчас клетки каждого из нас делятся митозом — он необходим для процессов роста, развития и регенерации.

Представьте себе: вы приходите в гости и видите потрясающей красоты фиалку, вам очень хочется иметь такую же у себя дома. Как вы поступите? Можно оторвать листик, принести его домой и поставить в воду. Через некоторое время клетки начинают делиться митозом, у листа появляются придаточные корни, а еще через пару месяцев у вас будет своя красивая фиалка. Фактически вы клонировали растение! Половые клетки в этом не играли никакой роли, а вот соматические активно делились. Одно из значений митоза — бесполое размножение.

Так как в результате митоза образуются одинаковые диплоидные клетки, благодаря такому делению поддерживается единый набор хромосом в организме. Все соматические  клетки одного организма содержат одинаковое количество хромосом. Например, и в клетке волоса, и в клетке глаза человека 46 хромосом.

Строение и функция сперматозоида

Сперматозоид человека — это специализированная клетка, строение которой позволяет ей выполнить свою функцию: преодолеть половые пути женщины и проникнуть в яйцеклетку, чтобы внести в неё генетический материал мужчины. Сперматозоид, сливаясь с яйцеклеткой, оплодотворяет её.

В организме человека сперматозоид является самой маленькой клеткой тела (если учитывать только саму головку без хвостика). Общая длина сперматозоида у человека равна приблизительно 55 мкм. Головка составляет приблизительно 5,0 мкм в длину, 3,5 мкм в ширину и 2,5 мкм в высоту, средний участок и хвостик — соответственно, приблизительно 4,5 и 45 мкм в длину.

Малые размеры, вероятно, необходимы для быстрого движения сперматозоида. Для уменьшения размера сперматозоида при его созревании происходят специальные преобразования: ядро уплотняется за счет уникального механизма конденсации хроматина (из ядра удаляются гистоны, и ДНК связывается с белками-протаминами), большая часть цитоплазмы выбрасывается из сперматозоида в виде так называемой «цитоплазматической капли», остаются только самые необходимые органеллы.

Сперматозоид мужчины имеет типичное строение и состоит из головки, средней части и хвоста.

Головка сперматозоида человека имеет форму эллипсоида, сжатого с боков, с одной из сторон имеется небольшая ямка, поэтому иногда говорят о «ложковидной» форме головки сперматозоида у человека. В головке сперматозоида располагаются следующие клеточные структуры:

  • Ядро, несущее одинарный набор хромосом. Такое ядро называют гаплоидным. После слияния сперматозоида и яйцеклетки (ядро которой также гаплоидно) образуется зигота — новый диплоидный организм, несущий материнские и отцовские хромосомы. При сперматогенезе (развитии сперматозоидов) образуются сперматозоиды двух типов: несущие X-хромосому и несущие Y-хромосому. При оплодотворении яйцеклетки X-несущим сперматозоидом формируется эмбрион женского пола. При оплодотворении яйцеклетки Y-несущим сперматозоидом формируется эмбрион мужского пола. Ядро сперматозоида значительно мельче ядер других клеток, это во многом связано с уникальной организацией строения хроматина сперматозоида (см. протамины). В связи с сильной конденсацией хроматин неактивен — в ядре сперматозоида не синтезируется РНК.
  • Акросома — видоизмененная лизосома — мембранный пузырек, несущий литические ферменты — вещества, растворяющие оболочку яйцеклетки. Акросома занимает около половины объёма головки и по своему размеру приблизительно равна ядру. Она лежит спереди от ядра и покрывает собой половину ядра (поэтому часто акросому сравнивают с шапочкой). При контакте с яйцеклеткой акросома выбрасывает свои ферменты наружу и растворяет небольшой участок оболочки яйцеклетки, благодаря чему образуется небольшой «проход» для проникновения сперматозоида. В акросоме содержится около 15 литических ферментов, основным из которых является акрозин.
  • Центросома — центр организации микротрубочек, обеспечивает движение хвоста сперматозоида, а также предположительно участвует в сближении ядер зиготы и первом клеточном делении зиготы.

Позади головки располагается так называемая «средняя часть» сперматозоида. От головки среднюю часть отделяет небольшое сужение — «шейка». Позади средней части располагается хвост. Через всю среднюю часть сперматозоида проходит цитоскелет жгутика, который состоит из микротрубочек. В средней части вокруг цитоскелета жгутика располагается митохондрион — гигантская митохондрия сперматозоида. Митохондрион имеет спиральную форму и как бы обвивает цитоскелет жгутика. Митохондрион выполняет функцию синтеза АТФ и тем самым обеспечивает движение жгутика.

Хвост, или жгутик, расположен за средней частью. Он тоньше средней части и значительно длиннее её. Хвост — орган движения сперматозоида. Его строение типично для клеточных жгутиков эукариот.

Оплодотворение

Теперь созревшая яйцеклетка готова к зачатию новой жизни, которое произойдет при встрече со сперматозоидом. Эта встреча и называется оплодотворением. Только после этого яйцеклетка претерпевает еще одно изменение.

Зрелая яйцеклетка дожидается оплодотворения в полости матки примерно один день, и если оно не происходит, погибает. Сперматозоиды могут дожидаться своего часа около месяца, но после выброса спермы тоже живут не дольше одного дня. Придаток яичка, в котором хранятся зрелые сперматозоиды, соединен с семявыносящим протоком, а через него — с уретрой, или мочевыводящим каналом, в половом члене мужчины. Яйцеклетка все время находится в полости матки.

Производство клеток спермы у людей

Это отражает универсальный биологический принцип двойственных характеристик или полярности, и некоторые религии считают, что это в дальнейшем отражает характеристики Высшего Существа как единого существа как маскулинности, так и женственности.

Оплодотворение и акросомная реакция

Основная функция спермы — оплодотворение яйца, чтобы сформировать зиготу. Чтобы сделать это, клетка спермы должна найти яйцо, проникнуть в его защитные слои, а затем окончательно слить его генетический материал с яйцом. Процесс, через который клетка спермы прорывается сквозь барьеры яйца, называется акросомным процессом.

Сперматозоиды попадают во влагалище с выбросом семенной жидкости. В одной порции жидкости может присутствовать около 250 млн. сперматозоидов, которые тотчас начинают двигаться к матке, хотя далеко не все добираются до цели. Если в момент полового акта имеется готовая к оплодотворению яйцеклетка, вероятность зачатия довольно высока.

Как только сперма вошла в женскую влагалище или клоаку, сперма начинает свою задачу поиска яйца. Сперма не плавает в случайном порядке, они используют различные подсказки и факторы, чтобы помочь достичь яйца. У людей, по-видимому, женский репродуктивный тракт становится теплее по мере приближения фаллопиевых труб. Текущие исследования в Гарвардском университете показали, что сперма плавает от более холодных до более теплых регионов. Является ли яйцо или женское тело высвобождением хемоаттрактанта, пока неясно.

Но исследования были убедительными, чтобы показать, что сперма может пахнуть. По существу, сперматозоиды пахнут от влагалища до места яйца в дистальных отделах фаллопиевых труб у самки. Когда сперма встречает яйцо, возможно оплодотворение. Для успешного оплодотворения сперма должна сначала проникать в различные слои, окружающие яйцо. Наружный слой яйца — слабосвязанные клетки гранулезы. Эти клетки составляют то, что известно как корона-излучение, и они развиваются с яйцом, чтобы поддержать его рост, а затем служат для обеспечения физического барьера для оплодотворения.

Прежде чем произойдет оплодотворение, сперматозоиды должны некоторое время провести в организме женщины. За этот период (у человека примерно 7 часов) происходят подготовительные изменения. Содержащийся в головке сперматозоида энзим нейтрализует кислотную среду вокруг прозрачной зоны, открывая путь к яйцеклетке. Для разрушения этого внешнего барьера требуются энзимы множества сперматозоидов, но в яйцеклетку проникает только один из них.

Однако, чтобы преодолеть эти два основных барьера, сперма должна высвобождать свои мощные ферменты, содержащиеся в акросоме головы спермы. Выпуск этих ферментов начинается с акросомного процесса. Как только сперма приближается к яйцеклетке, возникают емкости и гиперактивность. Сперма начинает плавать быстрее и энергичнее. Недавнее открытие связывает гиперактивность с внезапным притоком ионов кальция в хвост спермы. Эти ионные каналы являются избирательными и позволяют пропускать только ионы кальция.

Резкое повышение уровня кальция в хвосте вызывает повышенную активность в жгутике, более сильное продвижение спермы через вязкую среду женской матки. Гиперактивность спермы необходима для прорыва физических барьеров, защищающих яйцо от оплодотворения. После того, как сперма пошла по направлению к яйцу, один из белков, составляющих зону пеллуцида, связывается с рецептором молекулы-партнера на сперме. Это рецептор спермы на поверхности яйца и функционирует при первоначальном связывании и индукции акросомальной реакции сперматозоидов.

История преимплантационной генетической диагностики (ПГД)

Первые живорождения после ПГД были зарегистрированы в Лондоне в 1989 году. Две двойни девочек-близнецов родились от пяти пар с риском передачи связанного с Х-хромосомой заболевания. В настоящее время с помощью методов генетического анализа или ПГД могут быть обнаружены около 90% аномальных эмбрионов. Не все хромосомные или генетические заболевания могут быть определены этими процедурами, так как в ходе одной процедуры может быть диагностировано только ограниченное число хромосом. Многочисленные исследования на животных и некоторые исследования на человеке показывают, что микрохирургия эмбриона (биопсия), необходимая для удаления клеток, не влияет на нормальное развитие ребенка. Эта процедура, однако, была выполнена относительно небольшому числу пациентов во всем мире, поэтому точные негативные последствия, если таковые имеются, неизвестны. Несмотря на то, что после генетического анализа для выявления анеуплоидии всем мире на сегодняшний день было рождено уже много детей, эта процедура все еще относительно нова. В исследованиях на животных не было обнаружено никаких очевидных проблем и предварительные данные с эмбрионами человека позволяют предположить справедливость этого вывода. В исследовании, проведенном в Университетском колледже Лондона, исследователи недавно рассмотрели 12 преимплантационных эмбрионов с новой техникой, которая сочетает в себе амплификацию всего генома (WGA) и сравнительную гибридизацию генома (CGH). В результате в 8 из 12 изученных эмбрионов были обнаружены значительные хромосомные аномалии. Это может объяснить, почему люди имеют в лучшем случае 25% шансов на достижение жизнеспособной беременности в месяц при естественном зачатии.

Хранилища

Сперматозоиды образуются из половых клеток, или сперматогоний, которые, как все прочие клетки организма, имеют 23 пары хромосом и способны расти и делиться. Созревающие и готовые к оплодотворению сперматозоиды хранятся в мужских гонадах (репродуктивных органах) — двух яичках, упрятанных во избежание перегрева в особый наружный мешочек, или мошонку. Дело в том, что для развития сперматозоидов требуется более низкая температура, чем для всех прочих функций организма.

Однако мейоз на удивление сложный. Вместо того, чтобы просто делить материнские и отцовские хромосомы между двумя дочерними клетками, хромосомы сначала дублируются, так что каждая из них состоит из двух нитей или хроматид. Затем дублируются отцовские и материнские хромосомы, а хромосомные плечи срастаются вместе. Для разделения этих хромосом на их хроматиды снова требуются два деления ядра в процессах, называемых первым и вторым мейотическими делениями. Это приводит к Х-образным хромосомам, состоящим из двух хроматид, удерживаемых вместе кольсиновыми кольцами только в их центре, известном как центромер.

Женские яйцеклетки образуются из оогоний, также наделенных 23 парами хромосом, но созревают внутри организма в двух резервуарах, называемых яичниками.

Прежде чем произойдет встреча сперматозоида и яйцеклетки, парные хромосомы должны разделиться на одинарные, чтобы слиться с 23 одинарными хромосомами другой клетки и образовать 23 новые пары. Благодаря этому делению зародыш наследует половину характеристик отца и половину — матери. Процесс деления парных хромосом называется мейозом.

Производятся четыре ядра гаплоидных гамет, каждая из которых содержит одну хроматидную хромосому из каждой хромосомы, другими словами, план тела. Если яйцо оплодотворено, генетический материал от матери и отца объединяется, и создается новый диплоидный набор хромосом, или просто: ребенок с носом папы и глазами мумии. В первом делении киназа побеждает на хромосомных плечах, но затем она теряет против фосфатазы в центромерах, — объясняет Захария. Последняя работа Группы теперь продемонстрировала, как киназа выигрывает борьбу с фосфатазой у центромера во втором дивизионе.

Созревшая и готовая к процессу деления сперматогония называется сперматоцитом I порядка. На этой стадии происходит деление парных хромосом, при котором в каждой из двух новых клеток оказывается половинка каждой пары. Теперь новые клетки (сперматоциты II порядка) содержат 23 одинарные хромосомы.

Такое же разделение парных хромосом происходит и в развивающейся яйцеклетке. Созревшая оогония преобразуется в окруженный фолликулом ооцит I порядка, и в процессе мейоза его парные хромосомы тоже разделяются на одинарные.

Эта универсальная киназа также присутствует в клетках человека. Нормальная клетка человека должна содержать ровно 46 хромосом. Они сочетаются с 23 парами. Пары с 1 по 22 пронумерованы по размеру и внешнему виду и одинаковы у мужчин и женщин. 23-я пара упоминается как половые хромосомы. При зачатии яйцо, содержащее 23 хромосомы от матери, сочетается с спермой, содержащей 23 хромосомы от отца. Два набора генетической информации объединяются так, что растущий эмбрион имеет 23 пары или 46 полных хромосом и представляет собой смесь генов обоих биологических родителей.

Процесс митоза

Деление клетки — это важный, сложный и энергозатратный процесс. Представьте себе, что вы планируете пойти в поход — что вам нужно сделать перед  этим? Для начала нужно подготовиться — скорее всего, сборы займут у вас даже больше сил, чем путешествие. Вот и клетке необходимо подготовиться! Для этого перед делением проходит  интерфаза.

Интерфаза деления

Обращаю ваше внимание на то, что интерфаза не является фазой деления. Ее правильнее будет назвать подготовительной стадией

Если бы вы были клеткой, что бы вам хотелось сделать, чтобы деление прошло без осложнений, а чтобы новые клетки ни в чем не нуждались первое время? В этой ситуации пригодилась бы энергия, строительные и наследственные материалы. Для получения всех этих веществ и проходит интерфаза.

Процессы, проходящие в интерфазу:

  • Синтез АТФ. В молекулах АТФ в нашем организме запасается энергия, а без энергии такую сложную процедуру было бы невозможно провести.
  • Синтез и накопление органических веществ. Нужно же из чего-то строить новые клетки?
  • Репликация ДНК. Удвоение молекулы ДНК — центральный процесс интерфазы. Из одной молекулы ДНК образуется две, молекула раскручивается и к каждой из цепочек, по принципу комплементарности, достраивается еще одна цепь. В итоге вместо одной ДНК в хромосоме образуется две, такая хромосома называется двухроматидной, а набор ДНК становится 4с.
  • Удвоение некоторых органоидов. Это нужно, чтобы после деления каждой клетке достался примерно одинаковый стартовый набор для начала самостоятельной жизни.

После такой серьезной подготовки можно перейти к делению. Благодаря репликации ДНК в интерфазе, клетка вступает в митоз с набором 2n4c. Например, для человека это 46 хромосом и 92 молекулы ДНК (по две молекулы в каждой хромосоме).

Для ЕГЭ важно помнить, что митоз проходит в 4 фазы. Чтобы закрепить правильную последовательность стадий, предлагаю маленький лайфхак — просто  запомните слово ПРИМАТ

Мы с вами относимся к приматам, а буквы в этом слове расположены так же, как фазы митоза, начинающиеся с этих букв. Профаза, метафаза, анафаза и телофаза.

Профаза

В профазе хромосомы спирализуются, из-за этого ядро и ядерная оболочка распадаются.

  • Хромосомы хаотично располагаются в цитоплазме.
  • Центриоли клеточного центра расходятся к полюсам и начинают формировать веретено деления.
  • Несмотря на то, что процессы идут достаточно активно, на набор ни один из них не влияет, и он остается прежним-—2n4c.

Метафаза

Пожалуй, самая красивая фаза митоза — метафаза. Ее частенько упоминают в фильмах и сериалах про школу, например в «Сумерках», потому что она лучше остальных фаз просматривается в микроскоп.

  • Хромосомы выстраиваются в линию друг за другом по экватору и формируют метафазную или экваториальную пластинку.
  • Нити веретена деления прикрепляются к центромерам хромосом. Получается, что каждая из них удерживается с двух полюсов.  
  • Хромосомы поменяли только положение, набор в клетке не изменился – 2n4c

Анафаза

Активная и интересная фаза.

  • Нити веретена деления сокращаются и разрывают двухроматидные хромосомы, растаскивая сестринские хроматиды к противоположным полюсам клетки
  • Каждая из хроматид становится однохроматидной хромосомой с одной молекулой ДНК внутри
  • Количество хромосом увеличивается вдвое, а количество молекул ДНК не меняется. Набор 4n4c.

Телофаза

После того, как клетка разделила генетический материал по полюсам, она может приступить непосредственно к делению.

  • Происходит деспирализация хромосом
  • В будущих клетках формируются ядра и ядерные оболочки
  • Цитоплазма и органоиды распределяются поровну
  • Клетка делится надвое, в результате образуются две диплоидные клетки с набором 2n2c
  • Эти клетки не только идентичны друг другу, но и материнской клетке, которая вступила в деление изначально.

Что такое зигота: определение

Итак, из всего написанного выше, можно сделать вывод, что зигота – это яйцеклетка, которую оплодотворил сперматозоид. Именно с чуда оплодотворения, которое обычно происходить в течение трех суток после полового акта, берет свое начало внутриутробное развитие человека. И в течение этих трех дней зигота образуется. В результате проникновения спермия в яйцеклетку происходит объединение их ядер с хромосомными наборами из 23 материнских и 23 отцовских хромосом. Таким образом, образуется ядро зиготы.

Сколько хромосом имеет зигота? Она обладает полным набором, который включает в себя 46 хромосом. Таков хромосомный набор зиготы.

Потом происходит дробление зиготы. Обычно дробление человеческой зиготы представляет собой трех-четырехдневный процесс деления зародыша на мелкие частички-клетки путем воспроизводства их структуры полностью аналогично структуре яйцеклетки. Итак, после оплодотворения из зиготы развиваются бластомеры – клетки, которые образовались при ее дроблении. В свою очередь они также делятся, при этом разными темпами, другими словами их деление не является синхронным.

Только вдумайтесь, сколько типов гамет образует зигота. Это по-настоящему удивительный процесс.

В результате в процессе оплодотворения в зиготе образуется два дифференцированных бластомера. Один, который является более крупным, «темным», выступает основанием для развития органов и тканей зародыша. Совокупность полученных в ходе последующих делений крупных бластомеров называют эмбриобластом. Второй, который является мелким и «светлым» видом бластомера, деление которого осуществляется быстрее, образует сочетание себе подобных – трофобласт. Благодаря ему появляются пальцевидные ворсинки, которые необходимы для дальнейшего закрепления зиготы на полости матки. Бластомеры, не имея друг с другом взаимодействия, удерживаются при помощи только блестящей оболочки яйцеклетки. В случае ее разрыва происходит развитие идентичных генетически эмбрионов, к примеру, однояйцевых близнецов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector