Звук

Звуковые волны

Когда тела колеблются и вызывают колебания окружающего воздуха или иной среды, они издают звуки. При этом частицы среды тоже начинают колебаться, образуя волну, проходящую в среде. Частицы среды могут совершать колебания как вдоль направления распространения волны, так и поперек. Соответственно различают продольные и поперечные механические волны.

Звуковые волны кажутся схожими с волнами на воде. Если на поверхность озера бросить маленький камень, то от места падения в разные стороны побегут волны. Возникают они потому, что частички воды на поверхности совершают колебания и эти колебания передаются следующим частичкам, то есть волной называется процесс распространения колебаний со временем. Волны на поверхности воды мы можем видеть непосредственно, они поперечные, ведь частицы воды движутся вертикально, вверх-вниз, а волна распространяется горизонтально. Но многие механические волны невидимые, например, звуковые волны, распространяющиеся в воздухе, мы можем только слышать. Ученые установили, что звуковые волны отличаются от волн на поверхности воды тем, что они продольные. Частицы среды колеблются взад-вперед вдоль направления движения волны, а не перпендикулярно ему, как в поперечных волнах. Еще одно отличие в том, что звук распространяется во всех направлениях, а не только горизонтально, как волны по воде.

Волны изображают с помощью диаграмм, на которых указывают частоту волн (количество колебаний за секунду) и их амплитуду (силу волн). Высокие звуки – это высокочастотные волны, низкие звуки – это низкочастотные волны. Звук с частотой более 20 000 Гц называют ультразвуком. Чем больше амплитуда волны, тем громче звук. По мере удаление от источника звука амплитуда падает и звук стихает. Высокие звуки, такие, как пение птиц, — это высокочастотные волны. Низкие звуки, например рев двигателя, — это низкочастотные волны.

Прибор, который позволяет увидеть форму звуковой волны, называется осциллографом.

В разных средах звуковые волны распространяются с разными скоростями. При 20°С в сухом воздухе скорость звука составляет 343 м/с. Сверхзвуковая скорость — это скорость выше скорости звука. Когда самолет выходит на сверхзвуковую скорость, возникает звуковой удар. Сверхзвуковые скорости измеряются в Махах: 1 Мах равен скорости звука. «Конкорд» летает со скоростью более 2 Махов – вдвое быстрее звука.

Шум – это неприятный звук. Измеряется уровень шума в децибелах (дБ). Шум свыше 120 дБ может вызвать боль. При падении листа звук в 10 дБ, а при взлете самолета – 110 дБ. Из всех животных самые громкие звуки может издавать синий кит – 188 дБ. Его можно услышать за 850 километров.

Как возникают звуки?

Звуки возникают в тех случаях, когда крохотные частицы, образующие
воздух, совершают очень быстрые и короткие движения вперед-назад. Такие
движения называются колебательными.

Когда вы ударяете по барабану, его поверхность колеблется и
сталкивается с частицами воздуха. Частицы воздуха, в свою очередь,
сталкиваются с другими такими же частицами, находящимися рядом с ними.
Звук распространяется в виде воля колеблющегося воздуха. Эти волны
расходятся широкими кругами. Сильные колебания вызывают громкие звуки,
а слабые, соответственно, тихие. Излучают звук колеблющиеся тела:
струна, камертон (если по ним ударить), колебания воздуха в прорези
свистка, колебания голосовых связок и т. п.

Воздух — это смесь газов. Молекулы газов, составляющие воздух,
находятся в беспорядочном тепловом движении, беспрерывно сталкиваются
друг с другом и разлетаются. За 1 секунду каждая молекула сталкивается
с другими миллиарды раз. Скорость их движения достигает 1000 м/сек.
Атмосфера существует на Земле только благодаря притяжению планеты; если
бы оно исчезло, все молекулы воздуха немедленно улетели бы в
межзвездное пространство. Притяжение Земли создает и атмосферное
давление. Но молекулы воздуха не падают на Землю, подобно камню, так
как они обладают кинетической энергией, беспрерывно обмениваются ею
друг с другом, противодействуют сжимающему их давлению. Это значит, что
газ обладает упругостью: он сопротивляется сжатию, а когда давление
снято, расширяется, занимая весь предоставленный ему объем. Упругостью
обладают и жидкости и твердые тела.

В твердых телах и в жидкостях действуют большие силы
межмолекулярного притяжения. Их молекулы не могут разойтись на
расстояние большее, чем позволяют эти силы. В газах же такие силы очень
слабы и их молекулы сближает только внешнее давление.
Упругость воздуха выражается в том, что любое давление на воздух
передается им равномерно во все стороны. Поэтому и возможна в воздухе
передача упругих волн, т. е. сжатий и разрежений газа, созданных любым
посторонним телом.

Из всего многообразия упругих волн звуковыми называют лишь те из
них, которые способен воспринимать наш орган слуха. Возникновение,
распространение и свойства звуковых волн изучаются специальным разделом
физики — акустикой.

Почему звуки отличаются друг от друга?

Когда частицы воздуха колеблются очень быстро, звуковые волны
следуют вплотную одна за другой. В таких случаях вы слышите высокий
звук, вроде птичьего чирикания.

Если же частицы воздуха колеблются медленно, то расстояние между
звуковыми волнами увеличивается. Тогда вы слышите низкий звук, вроде
пыхтения грузовика. Скорость колебаний называется звуковой частотой.

Неслышимые звуки

Звук, который воспринимается или слышится ухом человека, имеет частоты в диапазоне 20-20 000 Гц. Звуковые волны с более низкими частотами называют инфразвуком, а с выше — ультразвуком.

Когда были созданы высокочувствительные приемники звуков для различных частот, оказалось, что инфра- и ультразвуки так же распространены в природе, как и слышимые звуки.

Инфразвук

Инфразвук возникает при работе промышленных установок, автомобилей, тракторов и бытовых приборов. Например, сельскохозяйственные тракторы на резиновом ходу и грузовики имеют максимальные вибрации в диапазоне 1,5-3,5 Гц, гусеничные тракторы — около 5 Гц. Музыкальный орган так же может излучать инфразвук. Могут излучать звуки инфракрасных частот всевозможные взрывы и обвалы.

Чувствительные приемники ультразвука показали, что он входит в состав шума ветра и водопадов, в состав звуков, излучаемых некоторыми животными.

Механизм восприятия инфразвука и его влияние на физиологическое состояние человека пока полностью не изучены. Такие звуки неслышимые, однако в результате их воздействия на организм человека появляются повышенная нервозность, чувство страха, приступы тошноты. Иногда из носа и ушей идет кровь.

Свойство инфразвука вызывать страх используется полицией в ряде стран мира. При необходимости разогнать толпу полицейские включают мощные генераторы и вызывают у многих людей неосознанное чувство страха, желание поскорее уйти оттуда, где действует инфразвук.

Ультразвук

Ультразвуковые волны можно получить с помощью специальных высокочастотных излучателей. Узкий пучок ультразвуковых волн в процессе распространения очень мало расширяется. Благодаря этому ультразвуковую волну можно излучать в заданном направлении.

О ультразвуке не раз упоминается на уроках биологии — дельфины и летучие мыши используют его для эхолокации, то есть определения положения окружающих предметов.

Оказывается, что многие насекомые воспринимают ультразвук. Восприятие ультразвука в диапазоне частот до 100 кГц — способность многих грызунов. Собаки воспринимают ультразвук с частотой до 40 кГц.

Ультразвук сегодня широко применяют в различных отраслях науки и техники. Например, с его помощью измеряют глубину моря. С корабля посылают ультразвуковой сигнал и фиксируют промежуток времени до возвращения сигнала, отраженного от дна. Зная скорость звука в воде, можно определить расстояние до дна. Прибор для измерения глубины дна называют эхолотом.

С помощью ультразвука «просвечивают» металлические изделия для выявления в них скрытых дефектов — посторонних включений, трещин или пустот.

Ультразвук широко используют и в медицине — как для обследования больного, так и для его лечения. Лечебный эффект ультразвука основан на том, что он вызывает внутренний разогрев тканей организма.

Нотно-октавная система

В целом диапазон потенциально слышимых человеческим ухом звуков охватывает почти 11 октав. Т.к. наш курс посвящен музыкальной грамоте, нас интересуют только музыкальные звуки, т.е. примерно 9 октав. Чтобы было проще запомнить октавы и соответствующие им диапазоны звуковысотности, рекомендуем идти сверху вниз, т.е. от верхнего диапазона звуков к нижнему. Звуковысотность в герцах по каждой октаве для удобства запоминания укажем в двоичной системе.

Октавы (названия) и диапазоны:

  • Пятая октава – 4096-8192 Гц.
  • Четвертая октава – 2048-4096 Гц.
  • Третья октава – 1024-2048 Гц.
  • Вторая октава – 512-1024 Гц.
  • Первая октава – 256-512 Гц.
  • Малая октава – 128-256.
  • Большая октава – 64-128 Гц.
  • Контроктава – 32-64 Гц.
  • Субконтроктава – 16-31 Гц.

Прочие октавы в контексте музыкальных звуков рассматривать не имеет смысла. Так, самая высокая нота у мужчин – это «фа диез» 5-й октавы (5989 Гц), и установлен данный рекорд Амирхоссейном Молаи 31 июля 2019 года в городе Тегеран (Иран) . Певец Димаш из Казахстана дотягивается до ноты «ре» в 5-й октаве (4698 Гц). А звуки высотой ниже 16 Гц человеческое ухо воспринимать не может. Полную таблицу соответствия нот частотам и октавам вы можете изучить по нижеследующей картинке:

Фиолетовым цветом выделена 1-я нота первой октавы, т.е. нота «до», а зеленым – нота «ля» первой октавы. Именно на нее, т.е. на частоту 440 Гц, по умолчанию предустановленны все тюнеры для измерения высоты звука.

Ноты в октаве: варианты обозначения

Сегодня используются разные способы, чтобы обозначить принадлежность ноты (высоты звука) к разным октавам. Самый простой способ – записать названия нот, как они есть: «до», «ре», «ми», «фа», «соль», «ля», «си».

Второй вариант – это так называемая «нотация Гельмгольца». Такой способ предполагает обозначение нот латинскими буквами, а принадлежность к октаве – цифрами. Начнем с нот.

Ноты по Гельмгольцу:

  • С = «до».
  • D = «ре».
  • E = «ми».
  • F = «фа».
  • G = «соль».
  • A = «ля».
  • B = «си».

Теперь к октавам. Ноты в первой-пятой октавах записываются маленькими латинскими буквами и обозначаются цифрами от 1 до 5. Ноты малой октавы – маленькими латинскими буквами без цифр. Запомните ассоциацию: малая октава – маленькие буквы. Ноты большой октавы записываются большими латинскими буквами. Запомните: большая октава – большие буквы. Ноты контроктавы и субконтроктавы записываются большими буквами и цифрами 1 и 2 соответственно.

Ноты в октавах по Гельмгольцу:

  • Пятая октава – c5-b5.
  • Четвертая октава – c4-b4.
  • Третья октава – c3-b3.
  • Вторая октава – c2-b2.
  • Первая октава – c1-b1.
  • Малая октава – c-b.
  • Большая октава – С-В.
  • Контроктава – С11.
  • Субконтроктава – С22.

Если кого-то удивляет, почему первая нота октавы обозначается не первой буквой латинского алфавита, расскажем, что когда-то давно отсчет начинали с ноты «ля», за которой и закрепили обозначение А. Однако потом решили начинать октавный счет с ноты «до», за которой уже закрепилось обозначение С. Во избежание путаницы в нотных записях, решили сохранить буквенные обозначения нот, как есть.

Более подробно с нотацией Гельмгольца и другими его идеями вы можете ознакомиться в его работе, доступной на русском языке под названием «Учение о слуховых ощущениях как физиологическая основа для теории музыки» .

И, наконец, научная нотация, которую разработало «Американское акустическое общество» в 1939 году и которая тоже актуальна до сих пор. Ноты обозначаются заглавными латинскими буквами, а принадлежность к октаве – цифрами от 0 до 8.

Научная нотация:

  • Пятая октава – С8-В8.
  • Четвертая октава – С7-В7.
  • Третья октава – С6-В6.
  • Вторая октава – С5-В5.
  • Первая октава – С4-В4.
  • Малая октава – С3-В3.
  • Большая октава – С2-В2.
  • Контроктава – С1-В1.
  • Субконтроктава – С0-В0.

Обратите внимание, что цифры не совпадают с названиями октав от первой до пятой. Это обстоятельство часто вводит в заблуждение даже производителей специализированных программ для музыкантов

Поэтому в случае сомнений всегда проверяйте звучание и высоту ноты тюнером. Для этого скачайте мобильное приложение Pano Tuner и разрешите ему доступ к микрофону.

Осталось добавить, что впервые система научной нотации была обнародована в июльском номере The Journal of the Acoustical Society of America (журнале «Американского акустического общества») .

Теперь обобщим все принятые на сегодняшний день системы обозначения нот для каждой октавы

Для этого еще раз продублируем уже знакомую вам картинку с клавиатурой фортепиано и обозначениями ступеней звукоряда (нот), но уже с рекомендацией обращать внимание на цифровые и буквенные обозначения:

И, наконец, для максимально полного понимания базовых сведений теории музыки, нам следует разобраться с разновидностями тонов и полутонов.

Воздействие частот на организм человека

В настоящее время, в результате скрупулезных опытов доказано, что каждый орган человеческого организма резонирует с определенной частотой колебаний. Приведем резонансы некоторых органов:

20-30 Гц (т.е. 20-30 колебаний в секунду) – резонанс головы

40-100 Гц – резонанс глаз

0.5-13 Гц – резонанс вестибулярного аппарата

4-6 Гц – резонанс сердца

2-3 Гц – резонанс желудка

2-4 Гц – резонанс кишечника

6-8 Гц – резонанс почек

2-5 Гц – резонанс рук

В исследованиях часто выделяется звуковые колебания с конкретными числовыми значениями частот, которые резонируют с определенным участком мозга.

Например, низкий Бета-ритм частотой 15 Гц представляет нормальное состояние бодрствующего сознания. Альфа-ритм частотой 10,5 Гц вызывает состояние глубокой релаксации. Все аспекты имеют прямое отношение к воздействию музыки на организм человека.

Хотелось бы обратить особое внимание на периодичность повторения (ритм) низких звуков. Каждая новая низкочастотная звуковая волна приносит с собой изменение клеток в зоне попадания звуковой волны

И всё повторяется вновь. Интервал между моментом завершения действия одной низкочастотной звуковой волны и приходом следующей имеет огромное значение. После «отката» звуковой волны телом клетки производится выброс накопленного избытка концентрации этой материи, и состояние клетки возвращается к исходному.

А если новая звуковая волна приходит до того момента,  как клетка ещё не успела вернуться к исходному состоянию? В таком случае звуковая энергия новой волны не позволяет клетке вернуться к исходному состоянию и вынужденно удерживает клетку на этом качественном уровне. Другими словами, периодически повторяющиеся низкочастотные звуки не только провоцируют у человека определённую эмоциональную реакцию, но и в состоянии навязать ему это эмоциональное состояние. Эмоциональные состояния навязываются человеку против его воли, часто даже без понимания с его стороны того, что ему что-то навязывают.

Периодически повторяющиеся низкочастотные звуки в состоянии не только вынужденно удерживать клетку на определённом качественном уровне, но могут вызывать и частичное разрушение её качественных структур. Естественно, это приводит к дестабилизации клетки в целом и частичному разрушению тела клетки, в первую очередь, структур клетки, которые у молодёжи находятся в стадии развития и поэтому легко могут быть разрушены подобным процессом.

Звуковые волны с частотой  6-8 Герц (6-8 биений звуковой волны в секунду), вообще являются оружием. Фронт звуковой волны с данной частотой вызывает такое перераспределение первичных материй при своём прохождении, что вызывает необратимые процессы у высокоорганизованных клеток, которыми являются нейроны мозга. В результате этого возникает перегрузка мозга и нейроны разрушаются,  что в итоге приводит к их смерти…

Виды звуковых полей

http-equiv=»Content-Type» content=»text/html;charset=UTF-8″>yle=»text-align: justify;»>Звуковые поля имеют несколько  видов. Конечно, они излучаются различными источниками (рояль, вокалист, оркестр, ансамбль и т. п.) и могут иметь очень сложную структуру. Но для упрощения анализа структуры звуковых полей применяют обычно следующую классификацию: звуковое поле сферической волны, плоской и цилиндрической.

Звуковое поле сферической волны

Перед тем как рассматривать этот вид, скажем ещё о двух важных понятиях (фронт звуковой волны и звуковой луч).

Фронт звуковой волны — это поверхность, соединяющая точки среды, находящиеся в одинаковой фазе колебаний (например, круги на воде)

Звуковой луч — это линия, перпендикулярная фронту волны и направленная в сторону распространения звуковых волн.

Итак, сферическая волна относится к области низких частот, где длина звуковой волны велика по отношению к размеру источника. Например, на частоте 40 Гц длина волны составляет 8,5 метров. Практически любой источник звука будет иметь размеры меньше, чем эта длина волны.

Можно считать, что источник сигнала является точечным, а звуковые трёхмерные волны, расходящиеся от него сферические. (См. фото выше)

Фронт такой волны представляет сферу, где в центре источник звука, а звуковые лучи совпадают с радиусами.

Мощность (энергия), излучаемая таким точечным источником, распространяется равномерно по всем направлениям и не меняется при удалении от источника (если только не брать потери на вязкость, теплопроводность и др.)

Звуковое давление в поле сферической волны убывает пропорционально квадрату расстояния от источника.

Это очень важный аспект при записи музыкальных инструментов. Если предположить, что интенсивность меняется одинаково во всех направлениях, то сигналы равноудалённых микрофонов от источника, при прочих равных условиях, одинаковы.

Кроме этого, на низких частотах вблизи источника сигнала звуковое поле сферическое, а давление в нём меняется с изменением расстояния. При близком расположении направленных микрофонов возникает известный эффект (proximity — эффект ближней зоны) — получается гипертрофированная передача низких частот, что в большинстве случаев нежелательно, если только так не задумано автором. Происходит это потому, что разность давлений, действующая на обе стороны диафрагмы, усиливается ещё и разницей в уровнях звукового давления на фронтальной и тыльной стороне микрофона, так как они находятся на разных фронтах сферической волны. Поэтому направленные микрофоны воспринимают низкие частоты по-разному, в зависимости от их расстояния до источника.

Звуковое поле плоской волны

Среднечастотные и тем более высокочастотные составляющие порождают плоские волны.

Когда длина волны становится намного меньше размера источника и когда расстояние до источника увеличивается, то сферическую волну приближенно можно заменить плоской.

Фронт звуковой волны в плоской волне — это звуковые лучи, которые идут параллельно и при этом интенсивность и звуковое давление не зависят от расстояния.

На практике это означает, что звуковое давление уменьшается с расстоянием за счет различных потерь (вязкость среды, теплопроводность и т. д.)

Звуковое поле от любого источника на больших расстояниях можно считать плоским.

Звуковое поле цилиндрической волны

Если источник сильно вытянут в одном направлении (например, звуковая колонка), то вокруг него образуется звуковое поле цилиндрической волны.

Фронт звуковой волны представляет цилиндрические увеличивающиеся поверхности, а звуковые лучи направлены по радиусу цилиндра.

Вывод

Условно можно запомнить следующие:

  • на низких частотах и на достаточно близких расстояниях вокруг источника звука образуется сферическая волна
  • на высоких частотах и на достаточно больших расстояниях эти же источники создают плоскую звуковую волну
  • звуковое давление изменяется от расстояния и зависит от структуры звукового поля (особенно это актуально с описанным выше proximity — эффектом ближней зоны).

Спасибо, что читаете New Style Sound. Подписывайтесь (RSS-лента) и делитесь с друзьями.

Влияние звука на сахар

Первый опыт демонстрирует воздействие низких звуков (басов) на воду. В результате хаотичных биений звуковых волн, колебания которых не совпадают, образуя антирезонанс, на воде образуется беспорядочная рябь.

Второй опыт демонстрирует воздействие высоких звуков на сахар. Большая часть данного примера сопровождается звуком, который воспринимается слухом. Таким образом, – это ещё не ультразвук (который воспринимается человеком только на уровне подсознания), а используется обычный высокочастотный звук; лишь в конце эксперимента он переходит в сверхвысокое звучание. Соответственно – здесь изначальная частота звука не превышает 20000 Гц (= 20 кГц), примерный диапазон частот – от 100 Гц до 30 кГц.

С ультразвуком (при частоте колебания выше 20 кГц) происходило бы нечто подобное, с той лишь разницей, что длина волны была бы намного меньше, а узоры мельче (что-то похожее на рябь на воде).

Ультразвук с точки зрения физики – это колебание частиц упругой среды. Ученым хорошо известно, что ультразвук способен изменить мембрану клеток (вплоть до летального исхода), разрушить здание и т.п.; в области биофизики и медицины этой теме посвящено немало мыслей. Именно для подтверждения таких выводов представлен данный пример, процесс которого рассматривается ниже:

На вибрационный стенд крепится пластина, затем генератором частот задаётся частота колебаний. Происходящее далее описать несложно – частицы сахара собираются в областях с наименьшей амплитудой. Этот интерферентный узор, названный фигурами Хладни (в честь учёного – Эрнста Хладни), образуется при «встрече» звуковых волн, исходящих из разных точек. Волны при этом могут исходить непосредственно от источника (в данном случае – генератора) или являться отражением первичных волн.

Таким образом, подобный эффект является результатом наложения друг на друга сжатых или разреженных воздушных участков. Как уже известно, в момент образования звучания распространяющиеся сгустки воздуха (волны) чередуются друг с другом с различной частотой.

Хорошо заметно следующая взаимосвязь: чем выше звук, тем мельче узоры рисунка. Меняется частота звука, меняется и форма фигур. В данном случае наглядность опыта зависела не только от источника звука (расположение источника относительно поверхности с сахаром), или от того, как сам ультразвук направлен на пластину, но и от поверхности на которой рассыпан сахар.

Здесь тип поверхности – тонкая пластина – позволяет ультразвуку максимально эффективно действовать на эту поверхность. В результате стол с пластиной интенсивно подвергается волновому колебанию, и, соответственно, подвергает аналогичным процессам частицы сахара. Думается, что если поставить колонку на пол и рядом рассыпать сахар – эффект будет не таким ярким.

Но в любом случае, – звук, как волновое колебание, однозначно и эффективно действует на любой живой организм, в т.ч. и на человеческий. В свете вышерассмотренного следует осторожнее относиться к выбору музыки для прослушивания

Очень важно всегда сознательно и целенаправленно определять параметры её звучания, такие как громкость, продолжительность, насыщенность низкими частотами и т.п

Гиперзвук

Длина волны вычисляется путем деления скорости на частоту, поэтому с увеличением частоты длина волны уменьшается. Можно создать колебания настолько высокой частоты, что длина волны будет одного порядка с длиной свободного пробега молекул газа, например, воздуха. Это и есть гиперзвук. Он плохо распространяется, потому что воздух перестает считаться сплошной средой, т. к. длина волны ничтожно мала. В нормальных условиях (при атмосферном давлении) длина свободного пробега молекул равна 10-7 м. Каков диапазон частот волн? Звуковыми они не являются, потому что мы их не слышим. Если рассчитать частоту гиперзвука, то окажется, что она составляет 3×109 Гц и выше. Измеряют гиперзвук в гигагерцах (1 ГГц = 1 миллиард Гц).

Музыкальные звуки

К музыкальным принято относить звуки, обладающие ярко выраженной высотой. В таком звуке, помимо основного тона, выделяются его гармоники — компоненты, частоты которых кратны частоте основного тона. Например, если частота основного тона 220 Гц, его гармоники будут иметь частоты 440 Гц, 660 Гц, 880 Гц и т.д. Колебания струны в струнном, и колебания плотности воздушного столба в духовом инструменте создают звуки именно такого характера — с выраженными гармониками, подчеркивающими в нашем восприятии основной тон. В некоторых случаях гармоники даже вызывают иллюзию отсутствующего основного тона (резидуальные звуки).

Природа возникновения гармоник довольна проста — например, колебание струны имеет сложный характер, в нем кроме движения целой струны, создающего основной тон, можно выделить движение её половин, третей, четвертей и т.д., каждое их которых создает гармонику соответствующей частоты:

Геометрические характеристики звуковой волны

Реальная звуковая волна представляет собой сложный колебательный пакет продольных волн, который можно разложить на простые гармонические колебания. Каждое такое колебание описывается с геометрической точки зрения следующими характеристиками:

  1. Амплитуда — максимальное отклонение каждого участка волны от равновесия. Для этой величины принято обозначение A.
  2. Период. Это время, за которое простая волна совершает свое полное колебание. Через это время каждая точка волны начинает повторять свой колебательный процесс. Период принято обозначать буквой T и измерять в секундах в системе СИ.
  3. Частота. Это физическая величина, которая показывает, сколько колебаний данная волна совершает за секунду. То есть по своему смыслу она является величиной, обратной к периоду. Обозначается она латинской буквой f. Для частоты звуковой волны формула ее определения через период выглядит следующим образом: f = 1/T.
  4. Длина волны — это расстояние, которое она пробегает за один период колебаний. Геометрически длина волны представляет собой расстояние между двумя ближайшими максимумами или двумя ближайшими минимумами на синусоидальной кривой. Длина колебаний звуковой волны — это расстояние между ближайшими областями сжатия воздуха или ближайшими местами его разрежения в пространстве, где движется волна. Обозначается она обычно греческой буквой λ.
  5. Скорость распространения звуковой волны — это расстояние, на которое распространяется область сжатия или область разряжения волны за единицу времени. Обозначается эта величина буквой v. Для скорости звуковой волны формула имеет вид: v = λ*f.

Геометрия чистой звуковой волны, то есть волны постоянной чистоты, подчиняется синусоидальному закону. В общем случае формула звуковой волны имеет вид: y = A*sin(ωt), где y — значение координаты данной точки волны, t — время, ω = 2*pi*f — циклическая частота колебаний.

Как можно измерить?

Необходимо отметить, что звук все люди воспринимают по-разному, именно поэтому создаются специальные приборы для его измерения.

Наиболее часто определение уровня звука осуществляется с помощью датчика. Датчик уровня звука измеряет энергию звуковых волн, которая приходит за единицу времени на единицу площади поверхности приемника. Эта величина носит название интенсивности звука или шума и измеряется в мВт/м2 (микроватты на квадратный метр).

Давайте выясним, как между собой определяются децибелы и действительный уровень сигнала. Каждые 6 dB происходит изменение уровня сигнала в два раза.

Почему берется именно такое значение? Децибелом называется логарифм между отношением двух одинаковых энергетических величин, который затем умножается на 10. Амплитуда же не является энергетической величиной, поэтому её нужно перевести в подходящую величину.

Также для измерения интенсивности шума в различных местах зачастую используют специальный прибор, который называется шумомер.

Человеческое ухо – это весьма совершенный биологический датчик и звукоуловитель, который может воспринимать звуки, различающиеся в миллионы раз друг от друга.

В России есть определенный стандарт по установленным кривым равной громкости. Это ГОСТ Р ИСО 226—2009. Он имеет следующее название – «Акустика. Стандартные кривые равной громкости».

Существует как минимум три способа измерения громкости: по максимальному пиковому значению, по усреднённому значению уровня сигнала и по метрике ReplayGain. Из всех этих методик самой лучшей можно назвать ReplayGain

Он передает воспринимаемый уровень громкости и берет во внимание физиологические и психические особенности при звуковом восприятии

В настоящее время есть разнообразные методы физического выражения амплитуды звуковых колебаний, которые используются в разных областях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector